#!/usr/bin/env python3 # BenchFlow Interface for APPS # This file is a template for integrating APPS with BenchFlow import os import json import time from typing import Dict, List, Any, Optional, Union class BenchflowInterface: """ BenchFlow interface for APPS This class provides methods to: 1. Load the benchmark 2. Run evaluations 3. Format results """ def __init__(self, config_path: Optional[str] = None): """ Initialize the BenchFlow interface Args: config_path: Path to configuration file (optional) """ self.config = {} if config_path and os.path.exists(config_path): with open(config_path, 'r') as f: self.config = json.load(f) # Default configuration self.config.setdefault("max_samples", 100) self.config.setdefault("output_dir", "./results") # Create output directory if it doesn't exist os.makedirs(self.config["output_dir"], exist_ok=True) def load_benchmark(self) -> bool: """ Load the benchmark data Returns: bool: True if successful, False otherwise """ try: # TODO: Implement benchmark loading logic print(f"Loading APPS benchmark...") return True except Exception as e: print(f"Error loading benchmark: {e}") return False def evaluate(self, model_outputs: List[Dict[str, Any]]) -> Dict[str, Any]: """ Evaluate model outputs against the benchmark Args: model_outputs: List of model outputs to evaluate Returns: Dict containing evaluation results """ # TODO: Implement evaluation logic results = { "benchmark": "APPS", "version": "1.0.0", "timestamp": time.strftime("%Y-%m-%d %H:%M:%S"), "metrics": { "accuracy": 0.0, "f1_score": 0.0, "precision": 0.0, "recall": 0.0 }, "samples_evaluated": len(model_outputs) } return results def save_results(self, results: Dict[str, Any], filename: str = "results.json") -> str: """ Save evaluation results to file Args: results: Evaluation results to save filename: Name of the output file Returns: Path to the saved file """ output_path = os.path.join(self.config["output_dir"], filename) with open(output_path, 'w') as f: json.dump(results, f, indent=2) return output_path def get_benchmark_info(self) -> Dict[str, Any]: """ Get information about the benchmark Returns: Dict containing benchmark metadata """ return { "name": "APPS", "description": "A benchmark for code evaluation", "version": "1.0.0", "category": "code", "github": "https://github.com/hendrycks/apps", "paper": "https://arxiv.org/abs/1708.00055", "website": "" } # Example usage if __name__ == "__main__": interface = BenchflowInterface() if interface.load_benchmark(): print("Benchmark loaded successfully") # Example model outputs model_outputs = [ {"input": "Example input 1", "output": "Example output 1"}, {"input": "Example input 2", "output": "Example output 2"}, ] # Evaluate results = interface.evaluate(model_outputs) # Save results output_path = interface.save_results(results) print(f"Results saved to {output_path}") # Print benchmark info print(json.dumps(interface.get_benchmark_info(), indent=2))