import os from typing import Any, Dict import json from benchflow import BaseBench from benchflow.schemas import BenchArgs, BenchmarkResult class RareBench(BaseBench): def __init__(self): super().__init__() def get_args(self, task_id: str) -> BenchArgs: arguments = { "required": ["OPENAI_API_KEY"], "optional": [ {"DATASET_TYPE": "PHENOTYPE"}, {"JUDGE_MODEL": "chatgpt"}, {"FEW_SHOT": "none"}, {"COT": "none"}, {"TEST_END_IDX": f"{task_id}"} ], } return BenchArgs(arguments) def get_image_name(self) -> str: """ Return the Docker image name for running the WebArena benchmark. """ return "kirk2000/benchflow:rarebench-v1" def get_results_dir_in_container(self) -> str: """ Return the directory inside the container where the benchmark results will be stored. """ return "/app/results" def get_log_files_dir_in_container(self) -> str: """ Return the directory inside the container where the log files will be stored. """ return "/app/logs" def get_result(self, task_id: str) -> BenchmarkResult: """ Read and parse the benchmark result from the log files. This method expects a file named 'log_files.txt' in the results directory. It then reads the content of each log file listed in 'log_files.txt', aggregates the log output, and extracts the average score and pass status. """ results_txt = os.path.join(self.results_dir, "result.json") if not os.path.exists(results_txt): return BenchmarkResult(task_id=task_id, is_resolved=False, metrics={"score": 0},log={"error": "No results found"}, other={}) log_content = "" try: with open(results_txt, 'r') as f: result = json.load(f) except Exception as e: return BenchmarkResult(task_id=task_id, is_resolved=False, metrics={"score": 0}, log={"error": f"Failed to read log files: {e}"}, other={}) # Parse the log content to extract score and status is_resolved = True metrics = result["metric"] log_content_dir = os.path.join(self.results_dir, os.path.relpath(result["folder"], "./results")) for file in os.listdir(log_content_dir): with open(os.path.join(log_content_dir, file), 'r') as f: log_content += f.read() + "\n" return BenchmarkResult(task_id=task_id, is_resolved=is_resolved, metrics=metrics, log={"details": log_content}, other={}) def get_all_tasks(self, split: str) -> Dict[str, Any]: """ Return a dictionary with all task IDs and an optional error message. For 'train' split, return 200 tasks; otherwise, return 812 tasks. """ return {"task_ids": ["RAMEDIS", "MME", "HMS", "LIRICAL", "PUMCH_ADM", "PHENOTYPE"], "error_message": None} def cleanup(self): """ Clean up benchmark resources by removing the local results and log files directories. """ pass