/
Bird4c32645
from benchflow import BaseBench
from benchflow.schemas import BenchArgs
from benchflow.schemas import BenchmarkResult
from typing import Dict, Any
import os
import json
class BirdDevBench(BaseBench):
def __init__(self):
super().__init__()
def get_args(self, task_id: str) -> BenchArgs:
arguments = {
"required": [],
"optional": [
{"CHAIN_OF_THOUGHT": "True"},
{"USE_KNOWLEDGE": "True"}
],
}
return BenchArgs(arguments)
def get_image_name(self) -> str:
"""
Return the Docker image name for running the WebArena benchmark.
"""
return "kirk2000/benchflow:bird-dev-v1"
def get_results_dir_in_container(self) -> str:
"""
Return the directory inside the container where the benchmark results will be stored.
"""
return "/app/result"
def get_log_files_dir_in_container(self) -> str:
"""
Return the directory inside the container where the log files will be stored.
"""
return "/app/prediction_result"
def get_result(self, task_id: str) -> BenchmarkResult:
"""
Read and parse the benchmark result from the log files.
This method expects a file named 'log_files.txt' in the results directory.
It then reads the content of each log file listed in 'log_files.txt',
aggregates the log output, and extracts the average score and pass status.
"""
results_txt = os.path.join(self.results_dir, "evaluation_result_ex.json")
if not os.path.exists(results_txt):
return BenchmarkResult(task_id=task_id, is_resolved=False, metrics={"score": 0},log={"error": "No results found"}, other={})
with open(results_txt, 'r') as f:
result = json.load(f)
is_resolved = True
metrics = result["accuracy"]
metrics = {"simple_task_accuracy": metrics["simple"], "moderate_task_accuracy": metrics["moderate"], "challenging_task_accuracy": metrics["challenging"], "total_task_accuracy": metrics["total"]}
paths = [os.path.join(self.log_files_dir, "turbo_output_kg", "predict_dev.json"),
os.path.join(self.log_files_dir, "turbo_output", "predict_dev.json"),
os.path.join(self.log_files_dir, "turbo_output_kg", "predict_dev_cot.json"),
os.path.join(self.log_files_dir, "turbo_output", "predict_dev_cot.json"),
]
existing_paths = [path for path in paths if os.path.exists(path)]
if len(existing_paths) != 1:
return BenchmarkResult(task_id=task_id, is_resolved=False, metrics={"score": 0},log={"error": f"no valid log file found, find {len(existing_paths)} log files"}, other={})
log_content_dir = existing_paths[0]
log_content = ""
with open(log_content_dir, 'r') as f:
log_content += f.read()
return BenchmarkResult(task_id=task_id, is_resolved=is_resolved, metrics=metrics, log={"details": log_content}, other={})
def get_all_tasks(self, split: str) -> Dict[str, Any]:
"""
Return a dictionary with all task IDs and an optional error message.
"""
return {"task_ids": ["all"], "error_message": None}
def cleanup(self):
"""
Clean up benchmark resources by removing the local results and log files directories.
"""
pass