mirrored 4 minutes ago
0
kirkfeat: add run.sh to auto run e2e pipeline 533f0ef
import os
import pdb
import sys
import json
import numpy as np
import argparse
import sqlite3
import multiprocessing as mp
from func_timeout import func_timeout, FunctionTimedOut
import time
import math

def result_callback(result):
    exec_result.append(result)

def clean_abnormal(input):
    input = np.asarray(input)
    processed_list = []
    mean = np.mean(input,axis=0)
    std = np.std(input,axis=0)
    for x in input:
        if x < mean + 3 * std and x > mean - 3 * std:
            processed_list.append(x)
    return processed_list

def execute_sql(sql, db_path):
    # Connect to the database
    conn = sqlite3.connect(db_path)
    # Create a cursor object
    cursor = conn.cursor()
    start_time = time.time()
    cursor.execute(sql)
    exec_time = time.time() - start_time
    return exec_time

def iterated_execute_sql(predicted_sql,ground_truth,db_path,iterate_num):
    conn = sqlite3.connect(db_path)
    diff_list = []
    cursor = conn.cursor()
    cursor.execute(predicted_sql)
    predicted_res = cursor.fetchall()
    cursor.execute(ground_truth)
    ground_truth_res = cursor.fetchall()
    time_ratio = 0
    if set(predicted_res) == set(ground_truth_res):
        for i in range(iterate_num):
            predicted_time = execute_sql(predicted_sql, db_path)
            ground_truth_time = execute_sql(ground_truth, db_path)
            diff_list.append(ground_truth_time / predicted_time)
        processed_diff_list = clean_abnormal(diff_list)
        time_ratio = sum(processed_diff_list) / len(processed_diff_list)
    return time_ratio



def execute_model(predicted_sql,ground_truth, db_place, idx, iterate_num, meta_time_out):
    try:
        # you can personalize the total timeout number
        # larger timeout leads to more stable ves
        # while it needs more your patience....
        time_ratio = func_timeout(meta_time_out * iterate_num, iterated_execute_sql,
                                  args=(predicted_sql, ground_truth, db_place, iterate_num))
        # print([idx, math.sqrt(time_ratio)])
    except KeyboardInterrupt:
        sys.exit(0)
    except FunctionTimedOut:
        result = [(f'timeout',)]
        time_ratio = 0
    except Exception as e:
        result = [(f'error',)]  # possibly len(query) > 512 or not executable
        time_ratio = 0
    result = {'sql_idx': idx, 'time_ratio': time_ratio}
    return result


def package_sqls(sql_path, db_root_path, mode='gpt', data_mode='dev', cot=False):
    clean_sqls = []
    db_path_list = []
    if mode == 'gpt':
        if cot:
            sql_data = json.load(open(sql_path + 'predict_' + data_mode + '_cot.json', 'r'))
        else:
            sql_data = json.load(open(sql_path + 'predict_' + data_mode + '.json', 'r'))
        for idx, sql_str in sql_data.items():
            if type(sql_str) == str:
                sql, db_name = sql_str.split('\t----- bird -----\t')
            else:
                sql, db_name = " ", "financial"
            clean_sqls.append(sql)
            db_path_list.append(db_root_path + db_name + '/' + db_name + '.sqlite')

    elif mode == 'gt':
        sqls = open(sql_path + data_mode + '_gold.sql')
        sql_txt = sqls.readlines()
        for idx, sql_str in enumerate(sql_txt):
            sql, db_name = sql_str.strip().split('\t')
            clean_sqls.append(sql)
            db_path_list.append(db_root_path + db_name + '/' + db_name + '.sqlite')

    return clean_sqls, db_path_list

def run_sqls_parallel(sqls, db_places, num_cpus=1, iterate_num=100, meta_time_out=30.0):
    pool = mp.Pool(processes=num_cpus)
    for i,sql_pair in enumerate(sqls):
        predicted_sql, ground_truth = sql_pair
        pool.apply_async(execute_model, args=(predicted_sql, ground_truth, db_places[i], i, iterate_num, meta_time_out), callback=result_callback)
    pool.close()
    pool.join()

def sort_results(list_of_dicts):
  return sorted(list_of_dicts, key=lambda x: x['sql_idx'])

def compute_ves(exec_results):
    num_queries = len(exec_results)
    total_ratio = 0
    count = 0

    for i, result in enumerate(exec_results):
        if result['time_ratio'] != 0:
            count += 1
        total_ratio += math.sqrt(result['time_ratio']) * 100
    ves = (total_ratio/num_queries)
    return ves

def load_json(dir):
    with open(dir, 'r') as j:
        contents = json.loads(j.read())
    return contents

def compute_ves_by_diff(exec_results,diff_json_path):
    num_queries = len(exec_results)
    contents = load_json(diff_json_path)
    simple_results, moderate_results, challenging_results = [], [], []
    for i,content in enumerate(contents):
        if content['difficulty'] == 'simple':
            simple_results.append(exec_results[i])
        if content['difficulty'] == 'moderate':
            moderate_results.append(exec_results[i])
        if content['difficulty'] == 'challenging':
            challenging_results.append(exec_results[i])
    simple_ves = compute_ves(simple_results)
    moderate_ves = compute_ves(moderate_results)
    challenging_ves = compute_ves(challenging_results)
    all_ves = compute_ves(exec_results)
    count_lists = [len(simple_results), len(moderate_results), len(challenging_results), num_queries]
    return simple_ves, moderate_ves, challenging_ves, all_ves, count_lists

def print_data(score_lists,count_lists):
    levels = ['simple', 'moderate', 'challenging', 'total']
    print("{:20} {:20} {:20} {:20} {:20}".format("", *levels))
    print("{:20} {:<20} {:<20} {:<20} {:<20}".format('count', *count_lists))

    print('=========================================    VES   ========================================')
    print("{:20} {:<20.2f} {:<20.2f} {:<20.2f} {:<20.2f}".format('ves', *score_lists))
    results = {
        "accuracy": {
            "simple": score_lists[0],
            "moderate": score_lists[1],
            "challenging": score_lists[2],
            "total": score_lists[3]
        },
        "counts": {
            "simple": count_lists[0],
            "moderate": count_lists[1],
            "challenging": count_lists[2],
            "total": count_lists[3]
        }
    }
    output_file = "../result/evaluation_result_ves.json"
    os.makedirs(os.path.dirname(output_file), exist_ok=True)

    with open(output_file, "w") as f:
        json.dump(results, f, indent=4)

if __name__ == '__main__':
    args_parser = argparse.ArgumentParser()
    args_parser.add_argument('--predicted_sql_path', type=str, required=True, default='')
    args_parser.add_argument('--ground_truth_path', type=str, required=True, default='')
    args_parser.add_argument('--data_mode', type=str, default='dev')
    args_parser.add_argument('--db_root_path', type=str, required=True, default='')
    args_parser.add_argument('--num_cpus', type=int, default=4)
    args_parser.add_argument('--meta_time_out', type=float, default=30.0)
    args_parser.add_argument('--mode_gt', type=str, default='gt')
    args_parser.add_argument('--mode_predict', type=str, default='gpt')
    args_parser.add_argument('--diff_json_path',type=str,default='')
    args_parser.add_argument('--cot', action='store_true')
    args = args_parser.parse_args()
    exec_result = []
    
    pred_queries, db_paths = package_sqls(args.predicted_sql_path, args.db_root_path, mode=args.mode_predict,
                                          data_mode=args.data_mode, cot=args.cot)
    # generate gt sqls:
    gt_queries, db_paths_gt = package_sqls(args.ground_truth_path, args.db_root_path, mode='gt',
                                           data_mode=args.data_mode)

    query_pairs = list(zip(pred_queries, gt_queries))
    run_sqls_parallel(query_pairs, db_places=db_paths, num_cpus=args.num_cpus, meta_time_out=args.meta_time_out)
    exec_result = sort_results(exec_result)
    print('start calculate')
    simple_ves, moderate_ves, challenging_ves, ves, count_lists = \
        compute_ves_by_diff(exec_result, args.diff_json_path)
    score_lists = [simple_ves, moderate_ves, challenging_ves, ves]
    print_data(score_lists, count_lists)
    print('===========================================================================================')
    print("Finished evaluation")