/
Bird63a252a
#!/usr/bin/env python3
import argparse
import json
import os
import sqlite3
from typing import Dict, Any
from tqdm import tqdm
from benchflow import BenchClient
class BirdClient(BenchClient):
def __init__(self, intelligence_url: str,):
super().__init__(intelligence_url)
def prepare_input(self, raw_step_inputs: Dict[str, Any]) -> Dict[str, Any]:
return {"system_prompt": raw_step_inputs["system_prompt"],
"user_prompt": raw_step_inputs["user_prompt"],
"schema_prompt": raw_step_inputs["schema_prompt"],
"question": raw_step_inputs["question"],
"knowledge": raw_step_inputs["knowledge"]}
def parse_response(self, raw_response: str) -> Dict[str, Any]:
return {"sql": raw_response}
def new_directory(path):
if not os.path.exists(path):
os.makedirs(path)
def get_db_schemas(bench_root: str, db_name: str) -> Dict[str, str]:
"""
Read an sqlite file, and return the CREATE commands for each of the tables in the database.
"""
asdf = 'database' if bench_root == 'spider' else 'databases'
with sqlite3.connect(f'file:{bench_root}/{asdf}/{db_name}/{db_name}.sqlite?mode=ro', uri=True) as conn:
# conn.text_factory = bytes
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = cursor.fetchall()
schemas = {}
for table in tables:
cursor.execute("SELECT sql FROM sqlite_master WHERE type='table' AND name='{}';".format(table[0]))
schemas[table[0]] = cursor.fetchone()[0]
return schemas
def nice_look_table(column_names: list, values: list):
rows = []
# Determine the maximum width of each column
widths = [max(len(str(value[i])) for value in values + [column_names]) for i in range(len(column_names))]
# Print the column names
header = ''.join(f'{column.rjust(width)} ' for column, width in zip(column_names, widths))
# print(header)
# Print the values
for value in values:
row = ''.join(f'{str(v).rjust(width)} ' for v, width in zip(value, widths))
rows.append(row)
rows = "\n".join(rows)
final_output = header + '\n' + rows
return final_output
def generate_schema_prompt(db_path, num_rows=None):
# extract create ddls
'''
:param root_place:
:param db_name:
:return:
'''
full_schema_prompt_list = []
conn = sqlite3.connect(db_path)
# Create a cursor object
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table'")
tables = cursor.fetchall()
schemas = {}
for table in tables:
if table == 'sqlite_sequence':
continue
cursor.execute("SELECT sql FROM sqlite_master WHERE type='table' AND name='{}';".format(table[0]))
create_prompt = cursor.fetchone()[0]
schemas[table[0]] = create_prompt
if num_rows:
cur_table = table[0]
if cur_table in ['order', 'by', 'group']:
cur_table = "`{}`".format(cur_table)
cursor.execute("SELECT * FROM {} LIMIT {}".format(cur_table, num_rows))
column_names = [description[0] for description in cursor.description]
values = cursor.fetchall()
rows_prompt = nice_look_table(column_names=column_names, values=values)
verbose_prompt = "/* \n {} example rows: \n SELECT * FROM {} LIMIT {}; \n {} \n */".format(num_rows, cur_table, num_rows, rows_prompt)
schemas[table[0]] = "{} \n {}".format(create_prompt, verbose_prompt)
for k, v in schemas.items():
full_schema_prompt_list.append(v)
schema_prompt = "\n\n".join(full_schema_prompt_list)
return schema_prompt
def generate_comment_prompt(question, knowledge=None):
pattern_prompt_no_kg = "-- Using valid SQLite, answer the following questions for the tables provided above."
pattern_prompt_kg = "-- Using valid SQLite and understading External Knowledge, answer the following questions for the tables provided above."
# question_prompt = "-- {}".format(question) + '\n SELECT '
question_prompt = "-- {}".format(question)
knowledge_prompt = "-- External Knowledge: {}".format(knowledge)
if not knowledge_prompt:
result_prompt = pattern_prompt_no_kg + '\n' + question_prompt
else:
result_prompt = knowledge_prompt + '\n' + pattern_prompt_kg + '\n' + question_prompt
return result_prompt
def cot_wizard():
cot = "\nGenerate the SQL after thinking step by step: "
return cot
def few_shot():
ini_table = "CREATE TABLE singer\n(\n singer_id TEXT not null\n primary key,\n nation TEXT not null,\n sname TEXT null,\n dname TEXT null,\n cname TEXT null,\n age INTEGER not null,\n year INTEGER not null,\n birth_year INTEGER null,\n salary REAL null,\n city TEXT null,\n phone_number INTEGER null,\n-- tax REAL null,\n)"
ini_prompt = "-- External Knowledge: age = year - birth_year;\n-- Using valid SQLite and understading External Knowledge, answer the following questions for the tables provided above.\n-- How many singers in USA who is older than 27?\nThe final SQL is: Let's think step by step."
ini_cot_result = "1. referring to external knowledge, we need to filter singers 'by year' - 'birth_year' > 27; 2. we should find out the singers of step 1 in which nation = 'US', 3. use COUNT() to count how many singers. Finally the SQL is: SELECT COUNT(*) FROM singer WHERE year - birth_year > 27;</s>"
one_shot_demo = ini_table + '\n' + ini_prompt + '\n' + ini_cot_result
return one_shot_demo
def few_shot_no_kg():
ini_table = "CREATE TABLE singer\n(\n singer_id TEXT not null\n primary key,\n nation TEXT not null,\n sname TEXT null,\n dname TEXT null,\n cname TEXT null,\n age INTEGER not null,\n year INTEGER not null,\n age INTEGER null,\n salary REAL null,\n city TEXT null,\n phone_number INTEGER null,\n-- tax REAL null,\n)"
ini_prompt = "-- External Knowledge:\n-- Using valid SQLite and understading External Knowledge, answer the following questions for the tables provided above.\n-- How many singers in USA who is older than 27?\nThe final SQL is: Let's think step by step."
ini_cot_result = "1. 'older than 27' refers to age > 27 in SQL; 2. we should find out the singers of step 1 in which nation = 'US', 3. use COUNT() to count how many singers. Finally the SQL is: SELECT COUNT(*) FROM singer WHERE age > 27;</s>"
one_shot_demo = ini_table + '\n' + ini_prompt + '\n' + ini_cot_result
return one_shot_demo
def generate_combined_prompts_one(db_path, question, knowledge=None):
schema_prompt = generate_schema_prompt(db_path, num_rows=None) # This is the entry to collect values
comment_prompt = generate_comment_prompt(question, knowledge)
system_prompt = schema_prompt + '\n\n' + comment_prompt
user_prompt = cot_wizard() + '\nSELECT '
return system_prompt, user_prompt, schema_prompt
def connect_gpt(intelligence_url, system_prompt, user_prompt, schema_prompt, question, knowledge):
client = BirdClient(intelligence_url=intelligence_url)
response = client.get_response({"system_prompt": system_prompt, "user_prompt": user_prompt, "schema_prompt": schema_prompt, "question": question, "knowledge": knowledge})
return response["sql"]
def collect_response_from_gpt(db_path_list, question_list, intelligence_url, knowledge_list=None):
'''
:param db_path: str
:param question_list: []
:return: dict of responses collected from openai
'''
response_list = []
for i, question in tqdm(enumerate(question_list)):
print('--------------------- processing {}th question ---------------------'.format(i))
if knowledge_list:
system_prompt, user_prompt, schema_prompt = generate_combined_prompts_one(db_path=db_path_list[i], question=question, knowledge=knowledge_list[i])
else:
system_prompt, user_prompt, schema_prompt = generate_combined_prompts_one(db_path=db_path_list[i], question=question)
plain_result = connect_gpt(intelligence_url=intelligence_url, system_prompt=system_prompt, user_prompt=user_prompt, schema_prompt=schema_prompt, question=question, knowledge=knowledge_list[i] if knowledge_list else None)
if type(plain_result) == str:
sql = plain_result
else:
sql = 'SELECT' + plain_result['choices'][0]['text']
# responses_dict[i] = sql
db_id = db_path_list[i].split('/')[-1].split('.sqlite')[0]
sql = sql + '\t----- bird -----\t' + db_id # to avoid unpredicted \t appearing in codex results
response_list.append(sql)
return response_list
def question_package(data_json, knowledge=False):
question_list = []
for data in data_json:
question_list.append(data['question'])
return question_list
def knowledge_package(data_json, knowledge=False):
knowledge_list = []
for data in data_json:
knowledge_list.append(data['evidence'])
return knowledge_list
def decouple_question_schema(datasets, db_root_path):
question_list = []
db_path_list = []
knowledge_list = []
for i, data in enumerate(datasets):
question_list.append(data['question'])
cur_db_path = db_root_path + data['db_id'] + '/' + data['db_id'] +'.sqlite'
db_path_list.append(cur_db_path)
knowledge_list.append(data['evidence'])
return question_list, db_path_list, knowledge_list
def generate_sql_file(sql_lst, output_path=None):
result = {}
for i, sql in enumerate(sql_lst):
result[i] = sql
if output_path:
directory_path = os.path.dirname(output_path)
new_directory(directory_path)
json.dump(result, open(output_path, 'w'), indent=4)
return result
if __name__ == '__main__':
args_parser = argparse.ArgumentParser()
args_parser.add_argument('--eval_path', type=str, default='')
args_parser.add_argument('--mode', type=str, default='dev')
args_parser.add_argument('--use_knowledge', action='store_true')
args_parser.add_argument('--db_root_path', type=str, default='')
args_parser.add_argument('--data_output_path', type=str)
args_parser.add_argument('--chain_of_thought', action='store_true')
args_parser.add_argument('--intelligence_url', type=str, required=True)
args = args_parser.parse_args()
eval_data = json.load(open(args.eval_path, 'r'))
question_list, db_path_list, knowledge_list = decouple_question_schema(datasets=eval_data, db_root_path=args.db_root_path)
assert len(question_list) == len(db_path_list) == len(knowledge_list)
if args.use_knowledge:
responses = collect_response_from_gpt(db_path_list=db_path_list, question_list=question_list, intelligence_url=args.intelligence_url, knowledge_list=knowledge_list)
else:
responses = collect_response_from_gpt(db_path_list=db_path_list, question_list=question_list, intelligence_url=args.intelligence_url, knowledge_list=None)
if args.chain_of_thought:
output_name = args.data_output_path + 'predict_' + args.mode + '_cot.json'
else:
output_name = args.data_output_path + 'predict_' + args.mode + '.json'
generate_sql_file(sql_lst=responses, output_path=output_name)