/
MMLUed0b9b7
#!/usr/bin/env python3
# BenchFlow Interface for MMLU
# This file is a template for integrating MMLU with BenchFlow
import os
import json
import time
from typing import Dict, List, Any, Optional, Union
class BenchflowInterface:
"""
BenchFlow interface for MMLU
This class provides methods to:
1. Load the benchmark
2. Run evaluations
3. Format results
"""
def __init__(self, config_path: Optional[str] = None):
"""
Initialize the BenchFlow interface
Args:
config_path: Path to configuration file (optional)
"""
self.config = {}
if config_path and os.path.exists(config_path):
with open(config_path, 'r') as f:
self.config = json.load(f)
# Default configuration
self.config.setdefault("max_samples", 100)
self.config.setdefault("output_dir", "./results")
# Create output directory if it doesn't exist
os.makedirs(self.config["output_dir"], exist_ok=True)
def load_benchmark(self) -> bool:
"""
Load the benchmark data
Returns:
bool: True if successful, False otherwise
"""
try:
# TODO: Implement benchmark loading logic
print(f"Loading MMLU benchmark...")
return True
except Exception as e:
print(f"Error loading benchmark: {e}")
return False
def evaluate(self, model_outputs: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Evaluate model outputs against the benchmark
Args:
model_outputs: List of model outputs to evaluate
Returns:
Dict containing evaluation results
"""
# TODO: Implement evaluation logic
results = {
"benchmark": "MMLU",
"version": "1.0.0",
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"metrics": {
"accuracy": 0.0,
"f1_score": 0.0,
"precision": 0.0,
"recall": 0.0
},
"samples_evaluated": len(model_outputs)
}
return results
def save_results(self, results: Dict[str, Any], filename: str = "results.json") -> str:
"""
Save evaluation results to file
Args:
results: Evaluation results to save
filename: Name of the output file
Returns:
Path to the saved file
"""
output_path = os.path.join(self.config["output_dir"], filename)
with open(output_path, 'w') as f:
json.dump(results, f, indent=2)
return output_path
def get_benchmark_info(self) -> Dict[str, Any]:
"""
Get information about the benchmark
Returns:
Dict containing benchmark metadata
"""
return {
"name": "MMLU",
"description": "A benchmark for knowledge evaluation",
"version": "1.0.0",
"category": "knowledge",
"github": "https://github.com/hendrycks/test",
"paper": "https://arxiv.org/abs/2009.03300",
"website": ""
}
# Example usage
if __name__ == "__main__":
interface = BenchflowInterface()
if interface.load_benchmark():
print("Benchmark loaded successfully")
# Example model outputs
model_outputs = [
{"input": "Example input 1", "output": "Example output 1"},
{"input": "Example input 2", "output": "Example output 2"},
]
# Evaluate
results = interface.evaluate(model_outputs)
# Save results
output_path = interface.save_results(results)
print(f"Results saved to {output_path}")
# Print benchmark info
print(json.dumps(interface.get_benchmark_info(), indent=2))